% 1 - ορισμός. Τι είναι το Сверхпроводимость
Diclib.com
Διαδικτυακό λεξικό

Τι (ποιος) είναι Сверхпроводимость - ορισμός

СВОЙСТВО МАТЕРИАЛОВ ОБЛАДАТЬ НУЛЕВЫМ ЭЛЕКТРИЧЕСКИМ СОПРОТИВЛЕНИЕМ ПРИ КРИТИЧЕСКОЙ T°
Гиперпроводимость; Суперпроводник; Момент Лондона; Гравитомагнитный момент Лондона
  • Большого адронного коллайдера]].
  • фазовом переходе]] в сверхпроводящее состояние
  • Схема эффекта Мейснера. Показаны линии магнитного поля и их вытеснение из сверхпроводника, находящегося ниже своей критической температуры
  • Левитация]] [[YBCO]] в условиях сверхпроводимости
  • [[Магнит]], левитирующий над высокотемпературным сверхпроводником, охлаждаемым жидким азотом
  • График открытий сверхпроводимости с 1900 по 2015 годы

СВЕРХПРОВОДИМОСТЬ         
cостояние, в которое при низкой температуре переходят некоторые твердые электропроводящие вещества. Сверхпроводимость была обнаружена во многих металлах и сплавах и в некоторых полупроводниковых и керамических материалах, число которых все возрастает. Два из наиболее удивительных явлений, которые наблюдаются в сверхпроводящем состоянии вещества, - исчезновение электрического сопротивления в сверхпроводнике и выталкивание магнитного потока (см. ниже) из его объема. Первый эффект интерпретировался ранними исследователями как свидетельство бесконечно большой электрической проводимости, откуда и произошло название сверхпроводимость.
Исчезновение электрического сопротивления может быть продемонстрировано возбуждением электрического тока в кольце из сверхпроводящего материала. Если кольцо охладить до нужной температуры, то ток в кольце будет существовать неограниченно долго даже после удаления вызвавшего его источника тока. Магнитный поток - это совокупность магнитных силовых линий, образующих магнитное поле. Пока напряженность поля ниже некоторого критического значения, поток выталкивается из сверхпроводника, что схематически показано на рис. 1.
Твердое тело, проводящее электрический ток, представляет собой кристаллическую решетку, в которой могут двигаться электроны. Решетку образуют атомы, расположенные в геометрически правильном порядке, а движущиеся электроны - это электроны с внешних оболочек атомов. Поскольку поток электронов и есть электрический ток, эти электроны называются электронами проводимости. Если проводник находится в нормальном (несверхпроводящем) состоянии, то каждый электрон движется независимо от других. Способность любого электрона перемещаться и, следовательно, поддерживать электрический ток ограничивается его столкновениями с решеткой, а также с атомами примесей в твердом теле. Чтобы в проводнике существовал ток электронов, к нему должно быть приложено напряжение; это значит, что проводник имеет электрическое сопротивление. Если же проводник находится в сверхпроводящем состоянии, то электроны проводимости объединяются в единое макроскопически упорядоченное состояние, в котором они ведут себя уже как "коллектив"; на внешнее воздействие реагирует также весь "коллектив". Столкновения между электронами и решеткой становятся невозможными, и ток, однажды возникнув, будет существовать и в отсутствие внешнего источника тока (напряжения). Сверхпроводящее состояние возникает скачкообразно при температуре, которая называется температурой перехода. Выше этой температуры металл или полупроводник находится в нормальном состоянии, а ниже ее - в сверхпроводящем. Температура перехода данного вещества определяется соотношением двух "противоположных сил": одна стремится упорядочить электроны, а другая - разрушить этот порядок. Например, тенденция к упорядочиванию в таких металлах, как медь, золото и серебро, столь мала, что эти элементы не становятся сверхпроводниками даже при температуре, лежащей лишь на несколько миллионных кельвина выше абсолютного нуля. Абсолютный нуль (0 К, -273,16. С) - это нижняя граница температуры, при которой вещество теряет все свое тепло. Другие металлы и сплавы имеют температуры перехода в диапазоне от 0,000325 до 23,2 К (см. таблицу). В 1986 были созданы сверхпроводники из керамических материалов с необычайно высокой температурой перехода. Так, для образцов керамики YBa2Cu3O7 температура перехода превышает 90 К (см. также ТЕПЛОТА).
Сверхпроводящее состояние физики называют макроскопическим квантово-механическим состоянием. Квантовая механика, которой обычно пользуются для описания поведения вещества в микроскопическом масштабе, здесь применяется в макроскопическом масштабе. Именно то обстоятельство, что квантовая механика здесь позволяет объяснить макроскопические свойства вещества, и делает сверхпроводимость столь интересным явлением.
Открытие. Очень много сведений о металле дает соотношение между внешним напряжением и вызванным им током. Вообще говоря, это соотношение имеет вид равенства V/I = R, где V - напряжение, I - ток, а R - электрическое сопротивление. Согласно этому закону (закону Ома), электрический ток пропорционален напряжению при любом значении величины R, которая является коэффициентом пропорциональности. См. также ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ
.
Сопротивление обычно не зависит от тока, но зависит от температуры. Получив в 1908 жидкий гелий, Г.Камерлинг-Оннес из Лейденского университета (Нидерланды) стал измерять сопротивление чистой ртути, погруженной в жидкий гелий, и обнаружил (1911), что при температурах жидкого гелия сопротивление ртути падает до нуля. Позднее было установлено, что многие другие металлы и сплавы тоже становятся сверхпроводящими при низких температурах.
Следующее важное открытие было сделано в 1933 немецким физиком В.Мейсснером и его сотрудником Р.Оксенфельдом. Они обнаружили, что если цилиндрический образец поместить в продольное магнитное поле и охладить ниже температуры перехода, то он полностью выталкивает из себя магнитный поток. Эффект Мейсснера, как назвали это явление, был важным открытием, поскольку благодаря ему физикам стало ясно, что сверхпроводимость - квантово-механическое явление. Если бы сверхпроводимость заключалась только в исчезновении электрического сопротивления, то ее можно было пытаться объяснить законами классической физики.
См. также:
Сверхпроводимость         

свойство многих проводников, состоящее в том, что их электрическое сопротивление скачком падает до нуля при охлаждении ниже определённой критической температуры Тк, характерной для данного материала. С. обнаружена у более чем 25 металлических элементов, у большого числа сплавов и интерметаллических соединений, а также у некоторых полупроводников. Рекордно высоким значением Тк (около 23 К) обладает соединение Nb3Ge.

Основные явления. Скачкообразное исчезновение сопротивления при понижении температуры впервые наблюдал X. Камерлинг-Оннес (1911) на ртути (рис. 1). Он пришёл к выводу, что ртуть при Т = 4,15 К переходит в новое состояние, которое вследствие его необычных электрических свойств может быть названо сверхпроводящим. Несколько позднее Камерлинг-Оннес обнаружил, что электрическое сопротивление ртути восстанавливается при включении достаточно сильного магнитного поля (его называют критическим магнитным полем (См. Критическое магнитное поле) Нк). Измерения показали, что падение сопротивления до нуля происходит на протяжении очень узкого, но конечного интервала температур.

Ширина этого интервала для чистых образцов составляет 10-3 - 10-4 К и возрастает при наличии примесей и других дефектов структуры.

Отсутствие сопротивления в сверхпроводящем состоянии с наибольшей убедительностью демонстрируется опытами, в которых в сверхпроводящем кольце возбуждается ток, практически не затухающий с течением времени. В одном из вариантов опыта используются два кольца из сверхпроводящего металла. Большее из колец неподвижно закрепляется, а меньшее концентрически подвешивается на упругой нити таким образом, что когда нить не закручена, плоскости колец образуют между собой некоторый угол. Кольца охлаждаются в присутствии магнитного поля ниже температуры Тк, после чего поле выключается. При этом в кольцах возбуждаются токи, взаимодействие между которыми стремится уменьшить первоначальный угол между плоскостями колец. Нить закручивается, а наблюдаемое постоянство угла закручивания показывает, что токи в кольцах являются незатухающими. Опыты такого рода позволили установить, что сопротивление металла в сверхпроводящем состоянии меньше чем 10-20 омсм (сопротивление чистых образцов меди или серебра составляет около 10-9 омсм при температуре жидкого гелия). Однако сверхпроводник не является просто идеальным проводником, как это считалось ещё в течение более чем 20 лет после открытия С. Существование значительно более глубокого различия между нормальным и сверхпроводящим состояниями металла стало очевидным, после того как нем. физики В. Мейснер и Р. Оксенфельд (1933) установили, что слабое магнитное поле не проникает в глубь сверхпроводника. Особенно важно, что это имеет место независимо от того, было ли поле включено до или после перехода металла в сверхпроводящее состояние. В отличие от этого, идеальный проводник (т. е. проводник с исчезающе малым сопротивлением) должен захватывать пронизывающий его магнитный поток. Это различие иллюстрирует рис. 2 (а, б, в), на котором схематически изображено распределение поля вблизи односвязного металлического образца на трёх последовательных этапах опыта: а) образец находится в нормальном состоянии, внешнее поле свободно проникает в глубь металла; б) образец охлаждается ниже Тк, магнитное поле выталкивается из сверхпроводника (верхний рисунок), тогда как в случае идеального проводника распределение поля оставалось бы неизменным (нижний рисунок); в) внешнее поле выключается, при этом исчезает и намагниченность сверхпроводника. В случае идеального проводника поток магнитной индукции через образец сохранил бы свою величину, и картина поля была бы такой же, как у постоянного магнита.

Выталкивание магнитного поля из сверхпроводящего образца (это явление обычно называют эффектом Мейснера) означает, что в присутствии внешнего магнитного поля такой образец ведёт себя как идеальный Диамагнетик той же формы с магнитной восприимчивостью (См. Магнитная восприимчивость) χ= -1/4π. В частности, если образец имеет форму длинного сплошного цилиндра, а внешнее поле Н однородно и параллельно оси цилиндра, то магнитный момент, отнесённый к единице объёма, будет равен М = -Н/. Это примерно в 105 раз больше по абсолютной величине, чем удельная намагниченность диамагнитного металла в нормальном состоянии. Эффект Мейснера связан с тем, что при Н < Нк в поверхностном слое сверхпроводящего цилиндра появляется круговой незатухающий ток, сила которого как раз такова, что магнитное поле этого тока компенсирует внешнее поле в толще сверхпроводника. Опыт показывает, что в случае больших образцов слабое магнитное поле в условиях эффекта Мейснера проникает в металл на глубину δ Сверхпроводимость 10-5-10-6 см, именно в этом слое течёт поверхностный токоло

По своему поведению в достаточно сильных полях сверхпроводники подразделяются на две большие группы, т. н. сверхпроводники 1-го и 2-го рода. На рис. 3 и 4 в несколько идеализированной форме изображены кривые намагничивания М (Н), типичные для каждой из этих групп. Кривые относятся к случаю длинных цилиндрических образцов, помещенных в поле, параллельное оси цилиндра. При такой геометрии опыта отсутствуют эффекты размагничивания, и картина поэтому является наиболее простой. Начальный прямолинейный участок на этих кривых, где М =-Н/4π, соответствует интервалу значений Н, на котором имеет место эффект Мейснера. Как видно из рисунка, дальнейший ход кривых М (Н) для сверхпроводников 1-го и 2-го рода существенно различается.

Сверхпроводники 1-го рода, которыми являются все достаточно чистые сверх-проводящие металлические элементы (за исключением V и Nb), теряют С. при поле Н = Нк, когда поле скачком проникает в металл и он во всём объёме переходит в нормальное состояние. При этом удельный магнитный момент также скачком уменьшается примерно в 105 раз. Критическому полю Нк можно дать простое термодинамическое истолкование. При температуре Т < Тк и в отсутствии магнитного поля Свободная энергия в сверхпроводящем состоянии Fc ниже, чем в нормальном Fн. При включении поля свободная энергия сверхпроводника возрастает на величину H 2/, равную работе намагничивания, и при Н = Нк сравнивается с Fн (в силу малости магнитного момента в нормальном состоянии Fн практически не изменяется при включении поля). Т. о., поле Нк определяется из условия равновесия в точке перехода:

Fc + Н 2к/ = Fн. (1)

Критическое поле Нк зависит от температуры: оно максимально при Т = 0 и монотонно убывает до нуля по мере приближения к Тк. (Значения Нк для некоторых сверхпроводников приведены в ст. Сверхпроводники.) На рис. 5 изображена фазовая диаграмма на плоскости (Н, Т). Заштрихованная область, ограниченная кривой Нк (Т), соответствует сверхпроводящему состоянию. По измеренной зависимости Нк (Т) могут быть рассчитаны все термодинамические характеристики сверхпроводника 1-го рода. В частности, из формулы (1) непосредственно получается (при дифференцировании по температуре) выражение для теплоты фазового перехода (См. Теплота фазового перехода) в сверхпроводящее состояние:

, (2)

где S - Энтропия единицы объёма. Знак Q таков, что теплота поглощается сверхпроводником при переходе в нормальное состояние. Поэтому если разрушение С. магнитным полем производится при адиабатической изоляции образца, то последний будет охлаждаться.

Скачкообразный характер фазового перехода в магнитном поле (рис. 3) наблюдается только в случае весьма специальной геометрии опыта: длинный цилиндр в продольном поле. При произвольной форме образца и др. ориентациях поля переход оказывается растянутым по более или менее широкому интервалу значений Н: он начинается при Н < Нк и заканчивается, когда поле во всех точках образца превысит Нк. В этом интервале значений Н сверхпроводник 1-го рода находится в т. н. промежуточном состоянии (См. Промежуточное состояние). Он расслаивается на чередующиеся области нормальной и сверхпроводящей фаз, причём так, что поле в нормальной фазе вблизи границы раздела параллельно этой границе и равно Нк. По мере увеличения поля возрастает доля нормальной фазы и происходит уменьшение магнитного момента образца. Структура расслоения и характер кривой намагничивания существенно зависят от геометрических факторов. В частности, для пластинки, ориентированной перпендикулярно магнитному полю, расслоение начинается уже в слабом поле, гораздо меньшем, чем Нк.

С магнитными свойствами сверхпроводников тесно связаны и особенности протекания в них тока. В силу эффекта Мейснера ток является поверхностным, он сосредоточен в тонком слое, определяемом глубиной проникновения магнитного поля. Когда ток достигает некоторой критической величины, достаточной для создания критического магнитного поля, сверхпроводник 1-го рода переходит в промежуточное состояние и приобретает электрическое сопротивление.

К сверхпроводникам 2-го рода относится большинство сверхпроводящих сплавов. Кроме того, сверхпроводниками 2-го рода становятся и сверхпроводящие металлические элементы (сверхпроводники 1-го рода) при введении в них достаточно большого количества примесей. Картина разрушения сверхпроводимости магнитным полем является у этих сверхпроводников более сложной. Как видно из рис. 4, даже в случае цилиндрического образца в продольном поле происходит постепенное уменьшение магнитного момента на протяжении значительного интервала полей от Нк, когда поле начинает проникать в толщу образца, и до поля Нк, при котором происходит полное разрушение сверхпроводящего состояния. В большинстве случаев кривая намагничивания такого типа является необратимой (наблюдается магнитный Гистерезис). Величина гистерезиса очень чувствительна к технологии приготовления образцов, и в некоторых случаях путём специальной обработки удаётся получить образцы с почти обратимой кривой намагничивания. Поле Нк часто оказывается весьма большим, достигая сотен тысяч Эрстед (см. статьи Магниты сверхпроводящие (См. Магнит сверхпроводящий) и Сверхпроводники). Что же касается термодинамического критического поля Нк, определяемого соотношением (1), то оно для сверхпроводников 2-го рода не является непосредственно наблюдаемой характеристикой. Однако его можно рассчитать, исходя из найденных опытным путём значений свободной энергии в нормальном и сверхпроводящем состояниях в отсутствии магнитного поля. Оказывается, что вычисленное таким способом значение Нк попадает в интервал между и Т. о., проникновение магнитного поля в сверхпроводник 2-го рода начинается уже в поле, меньшем, чем Нк, когда условие равновесия (1) ещё нарушено в пользу сверхпроводящего состояния. Понять это парадоксальное на первый взгляд явление можно, если принять во внимание поверхностную энергию границы раздела нормальной и сверхпроводящей фаз (См. Фаза). В случае сверхпроводников 1-го рода эта энергия положительна, так что появление границы раздела приводит к проигрышу в энергии. Это существенно ограничивает степень расслоения в промежуточном состоянии. Аномальные магнитные свойства сверхпроводников 2-го рода можно качественно объяснить, если принять, что в этом случае поверхностная энергия отрицательна. Именно к такому выводу приводит современная теория сверхпроводимости. При отрицательной поверхностной энергии уже при Н < Нк энергетически выгодным является образование тонких областей нормальной фазы, ориентированных вдоль магнитного поля. Возможность реализации такого состояния сверхпроводника 2-го рода была предсказана А. А. Абрикосовым (1952) на основе теории сверхпроводимости В. Л. Гинзбурга и Л. Д. Ландау. Позднее им же был произведён детальный расчёт структуры этого состояния. Оказалось, что нормальные области зарождаются в форме нитей, пронизывающих образец и имеющих толщину, грубо говоря, сравнимую с глубиной проникновения магнитного поля. При увеличении внешнего поля концентрация нитей возрастает, что и приводит к постепенному уменьшению магнитного момента. Т. о., в интервале значений поля от до , сверхпроводник находится в состоянии, которое принято называть смешанным.

Фазовый переход в сверхпроводящее состояние в отсутствии магнитного поля. Прямые измерения теплоёмкости (См. Теплоёмкость) сверхпроводников при Н = 0 показывают, что при понижении температуры теплоёмкость в точке перехода Тк испытывает скачок до величины, которая примерно в 2,5 раза превышает её значение в нормальном состоянии в окрестности Тк (рис. 6). При этом теплота перехода Q = 0, что следует, в частности, из формулы (2) (Нк = 0 при Т = Тк). Т. о., переход из нормального в сверхпроводящее состояние в отсутствии магнитного поля является фазовым переходом 2-го рода. Из формулы (2) можно получить важное соотношение между скачком теплоёмкости и углом наклона кривой Нк (Т) (рис. 5) в точке Т = Тк:

,

где Сс и Сн- значения теплоёмкости в сверхпроводящем и нормальном состояниях. Это соотношение с хорошей точностью подтверждается экспериментом.

Природа сверхпроводимости. Совокупность экспериментальных фактов о С. убедительно показывает, что при охлаждении ниже Тк проводник переходит в новое состояние, качественно отличающееся от нормального. Исследуя различные возможности объяснения свойств сверхпроводника, особенно эффекта Мейснера, немецкие учёные, работавшие в Англии, Г. и Ф. Лондоны (1934) пришли к заключению, что сверхпроводящее состояние является макроскопическим квантовым состоянием металла. На основе этого представления они создали феноменологическую теорию, объясняющую поведение сверхпроводников в слабом магнитном поле - эффект Мейснера и отсутствие сопротивления. Обобщение теории Лондонов, сделанное Гинзбургом и Ландау (1950), позволило рассмотреть вопросы, относящиеся к поведению сверхпроводников в сильных магнитных полях. При этом было объяснено огромное количество экспериментальных данных и предсказаны новые важные явления. Убедительным подтверждением правильности исходных предпосылок упомянутых теорий явилось открытие эффекта квантования магнитного потока (См. Квантование магнитного потока), заключённого внутри сверхпроводящего кольца. Из уравнений Лондонов следует, что магнитный поток в этом случае может принимать лишь значения, кратные кванту потока Фо = hc/e*, где е* - заряд носителей сверхпроводящего тока, h - Планка постоянная, с - Скорость света. В 1961 Р. Долл и М. Небауэр и, независимо, Б. Дивер и У. Фейроенк (США) обнаружили этот эффект. Оказалось, что е* = 2e, где е - заряд электрона. Явление квантования магнитного потока имеет место и в случае упомянутого выше состояния сверхпроводника 2-го рода в магнитном поле, большем, чем Нк1. Образующиеся здесь нити нормальной фазы несут квант потока Фо. Найденная в опытах величина заряда частиц, создающих своим движением сверхпроводящий ток (е* = 2e), подтверждает Купера эффект, на основе которого в 1957 Дж. Бардин, Л. Купер и Дж. Шриффер (США) и Н. Н. Боголюбов (СССР) построили последовательную микроскопическую теорию С. Согласно Куперу, два электрона с противоположными Спинами при определённых условиях могут образовывать связанное состояние (куперовскую пару). Заряд такой пары равен 2e. Пары обладают нулевым значением спина и подчиняются Бозе - Эйнштейна статистике (См. Бозе - Эйнштейна статистика). Образуясь при переходе металла в сверхпроводящее состояние, пары испытывают т. н. бозе-конденсацию (см. Квантовая жидкость), и поэтому система куперовских пар обладает свойством сверхтекучести (См. Сверхтекучесть). Т. о., С. представляет собой сверхтекучесть электронной жидкости. При Т = 0 связаны в пары все электроны проводимости. Энергия связи электронов в паре весьма мала: она равна примерно 3,5 kTk, где k - Больцмана постоянная. При разрыве пары, происходящем, например, при поглощении кванта электромагнитного поля или кванта звука (Фонона), в системе возникают возбуждения. При отличной от нуля температуре имеется определённая равновесная концентрация возбуждений, она возрастает с температурой, а концентрация пар соответственно уменьшается. Энергия связи пары определяет т. н. щель в энергетическом спектре возбуждений, т. е. минимальную энергию, необходимую для создания отдельного возбуждения. Природа сил притяжения между электронами, приводящих к образованию пар, вообще говоря, может быть различной, хотя у всех известных сверхпроводников эти силы определяются взаимодействием электронов с фононами. Тем не менее развитие теории С. стимулировало интенсивные теоретические поиски других механизмов С. В этом плане особое внимание уделяется т. н. нитевидным (одномерным) и слоистым (двумерным) структурам, обладающим достаточно большой проводимостью, в которых имеются основания ожидать более интенсивного притяжения между электронами, чем в обычных сверхпроводниках, а следовательно, - и более высокой температуры перехода в сверхпроводящее состояние. Явления, родственные С., по-видимому, могут иметь место и в некоторых космических объектах, например в нейтронных звёздах (См. Нейтронные звёзды).

Практическое применение сверхпроводимости интенсивно расширяется. Наряду с магнитами сверхпроводящими (См. Магнит сверхпроводящий), сверхпроводящими магнитометрами (См. Сверхпроводящие магнитометры) существует ряд других технических устройств и измерительных приборов, основанных на использовании различных свойств сверхпроводников (см. Криоэлектроника). Построены сверхпроводящие резонаторы, обладающие рекордно высокой (до 1010) добротностью, сверхпроводящие элементы для ЭВМ, перспективно применение сверхпроводников в крупных электрических машинах и т. д.

Лит.: Де Жен П., Сверхпроводимость металлов и сплавов, пер. с англ., М., 1968; Линтон Э., Сверхпроводимость, пер. с англ., 2 изд., М., 1971; Сверхпроводимость. Сб. ст., М., 1967; Мендельсон К., На пути к абсолютному нулю, пер. с англ., М., 1971; физический энциклопедический словарь, т. 4, М., 1965, с. 475-82.

Г. М. Элиашберг.

Рис. 1. Зависимость сопротивления R от температуры Т для ртути (Hg) и для платины (Pt). Ртуть при Т = 4,12К переходит в сверхпроводящее состояние. R0°с - значение R при 0 °С.

Рис. 2. Распределение магнитного поля около сверхпроводящего шара и около шара с исчезающим сопротивлением (идеальный проводник): а) Т > Тк; б) Т < Тк, внешнее поле Нвн ≠ 0; в) Т < Тк, Нвн = 0.

Рис. 3. Кривая намагничивания сверхпроводников 1-го рода.

Рис. 4. Кривая намагничивания сверхпроводников 2-го рода.

Рис. 5. Фазовая диаграмма для сверхпроводников 1-го и 2-го рода.

Рис. 6. Скачок теплоёмкости сверхпроводника в точке перехода (Тк) в отсутствии внешнего магнитного поля (Сс и Сн - теплоёмкость в сверхпроводящем и нормальном состояниях).

СВЕРХПРОВОДИМОСТЬ         
физическое явление, наблюдаемое у некоторых веществ (сверхпроводников) при охлаждении их ниже определенной критической температуры Тк и состоящее в обращении в нуль электрического сопротивления постоянному току и в выталкивании магнитного поля из объема образца (Мейснера эффект). Сверхпроводимость открыта Х. Камерлинг-Оннесом (1911) в Hg. Теория создана в 1967. Переход в сверхпроводящее состояние связан с образованием куперовских пар электронов (см. Купера эффект). Механизм сверхпроводимости у т. н. высокотемпературных сверхпроводников (с Тк 100К) пока неизвестен.

Βικιπαίδεια

Сверхпроводимость

Сверхпроводи́мость — свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура). Известны несколько сотен соединений, чистых элементов, сплавов и керамик, переходящих в сверхпроводящее состояние. Сверхпроводимость — квантовое явление. Оно характеризуется также эффектом Мейснера, заключающимся в полном вытеснении магнитного поля из объёма сверхпроводника. Существование этого эффекта показывает, что сверхпроводимость не может быть описана просто как идеальная проводимость в классическом понимании.

Открытие в 1986—1993 годах ряда высокотемпературных сверхпроводников (ВТСП) далеко отодвинуло температурную границу сверхпроводимости и позволило практически использовать сверхпроводящие материалы не только при температуре кипения жидкого гелия (4,2 К), но и при температуре кипения жидкого азота (77 К), гораздо более дешёвой криогенной жидкости.

Παραδείγματα από το σώμα κειμένου για Сверхпроводимость
1. Не надо забывать: высокотемпературная сверхпроводимость и сверхпроводимость льда были открыты только в 1'86 году.
2. Сверхпроводимость числится среди рекордсменов Нобелевских премий.
3. Сверхпроводимость - это свойство проводить электрический ток без потерь на сопротивление.
4. Но замахнуться на сверхпроводимость такие охладители пока не в силах.
5. Изучая сверхпроводимость, ученые вдруг столкнулись с ее антиподом - сверхизоляцией.